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QSAR study of mosquito repellents using Codessa Pro
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Abstract—Protection times provided by 31 synthetic repellents against Aedes aegypti mosquitoes were correlated with the chemical
structures of these repellents using Codessa Pro software. Two statistically significant quantitative models with R2 values of ca. 0.80
are presented and discussed.
� 2006 Elsevier Ltd. All rights reserved.
Repellents are materials that disrupt the natural behav-
ior of blood-seeking insects and other organisms; repel-
lents provide personal protection and represent the first
line of defense for humans and animals against biting. A
well-known standard repellent is N,N-diethyl-3-meth-
ylbenzamide or N,N-diethyl-m-toluamide (DEET, com-
pound 7, Table 1).1 However, it has become urgent to
locate repellents which are more effective than DEET.

Few attempts have previously been made to apply
QSAR modeling to repellent activities. One reason for
this is that most of the extensive testing that has been
carried out1 has yielded only semi-quantitative data.
An exception is the work of Suryanarayana et al.2 who
measured a set of 31 repellents and proposed the corre-
lation Eq. 1, where logP, logVp, and ML are lipophilic-
ity, vapor pressure, and molecular length, respectively,
and a–d are constants.

PT ¼ a log P þ b log V pþ c log MLþ d. ð1Þ
However, Eq. 1 has a low correlation coefficient R at
0.551 (corresponding to a R2 of 0.304) and in addition,
one of the descriptors is the measured vapor pressure
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which has to be obtained before Eq. 1 can be used to
predict the activity of unknown compounds.

Other authors3 have also suggested that vapor pressure
and boiling point were related to repellent activity;
repellency is lost at vapor concentrations below a certain
minimum.4,5 Factors including evaporation from human
skin, skin absorption, and penetration clearly influence
repellent bioassays.6 Test-related factors (such as the
mosquito species utilized the cage size and the mosquito
density) also affect repellent bioassays.7

Ma et al.4 discussed the Suryanarayana’s data set and
postulated that amide group made an important contri-
bution for potent repellent activity, but reported no
numerical correlation. The same group explored molec-
ular similarity between insect juvenile hormone and
DEET analogues but they did not explore any quantita-
tive correlation with structure.8

The present QSAR study correlates mosquito repellent
activity (protection time, PT) as reported by Suryanara-
yana et al.2 with theoretical molecular descriptors; we
have also examined repellency using vapor pressure as
an external descriptor in view of the importance attrib-
uted to it by earlier workers.

Methodology for a general QSAR approach has previ-
ously been incorporated in the Codessa Pro9 software
package which enables the calculation of numerous
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Table 1. DEET (compound 7) and DEPA analogues
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ID Compound PT (h) Ring R R1 = R2 CAS nr. Exp Vp (Torr) Pred. logVp

1 o-Chlorobenzamide 5 a 2-Cl CH3 6526-67-6 9.63E-04 �2.94

2 Cyclohexamide 3 s H CH3 17566-51-7 0.0225 �1.77

3 m-Toluamide 3 a 3-CH3 CH3 6935-65-5 2.18E-03 �2.42

4 o-Ethoxylbenzamide 2.83 a 2-OC2H5 CH3 90526-02-6 1.65E-04 �3.75

5 Benzamide 1.67 a H CH3 611-74-5 0.0157 �2.02

6 p-Anisamide 1 a 4-OCH3 CH3 7291-00-1 4.38E-04 �3.35

7 m-Toluamide 5 a 3-CH3 C2H5 134-62-3 1.35E-03 �3.25

8 Benzamide 4 a H C2H5 1696-17-9 2.30E-03 �2.79

9 Cyclohexamide 4 s H C2H5 5461-52-9 2.92E-03 �2.34

10 o-Ethoxylbenzamide 3.5 a 2-OC2H5 C2H5 3688-82-2 2.58E-05 �4.61

11 p-Toluamide 2.83 a 4-CH3 C2H5 2728-05-4 3.65E-04 �3.25

12 p-Anisamide 1 a 4-OCH3 C2H5 7465-86-3 7.22E-05 �4.17

13 Benzamide 3 a H i-C3H7 14657-86-4 3.14E-04 �3.62

14 m-Toluamide 2.67 a 3-CH3 i-C3H7 5448-37-3 5.10E-05 �4.11

15 Cyclohexamide 2 s H i-C3H7 67013-94-9 3.70E-04 �3.60

16 p-Anisamide 1.17 a 4-OCH3 i-C3H7 349397-58-6 1.07E-05 �5.02

17 o-Ethoxybenzamide 1.08 a 2-OC2H5 i-C3H7 5442-04-6 3.70E-06 �5.49

18 o-Chlorobenzamide 1 a 2-Cl i-C3H7 349397-59-7 2.39E-05 �4.53

19 p-Toluamide 0.5 a 4-CH3 i-C3H7 5448-37-3 5.10E-05 �4.12

R1 R2 �3.16

20 m-Toluamide 0.67 a 3-CH3 HC2H5 26819-07-8 1.85E-03 �2.86

21 Benzamide 0.58 a H HC2H5 614-17-5 3.95E-04 �3.07

22 Cyclohexamide 0.5 s H HC2H5 138324-59-1 8.66E-04 �3.08

23 p-Toluamide 0.08 a 4-CH3 HC2H5 26819-08-9 7.67E-04 �3.98

24 p-Anisamide 0.08 a 4-OCH3 HC2H5 7403-41-0 1.29E-04 �4.33

25 o-Ethoxybenzamide 0.08 a 2-OC2H5 HC2H5 99985-68-9 5.68E-05 �3.76

N, R1, R2 �3.66

26 Benzamide 3 a H Piperidine 776-75-0 3.16E-04 �4.19

27 Cyclohexamide 2 s H Piperidine 7103-46-0 1.56E-04 �4.66

28 m-Toluamide 1.42 a 3-CH3 Piperidine 13290-48-7 4.41E-05 �4.21

29 o-Chlorobenzamide 1 a 2-Cl Piperidine 22342-21-8 1.94E-05 �5.12

30 p-Toluamide 1 a 4-CH3 Piperidine 13707-23-8 4.90E-05 �2.94

31 p-Anisamide 0.75 a 4-OCH3 Piperidine 57700-94-4 8.81E-06 �1.77
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quantitative descriptors from the molecular structural
formula.10,11 Codessa Pro has previously correlated suc-
cessfully numerous physical properties12 including chro-
matographic retention times and response features,
melting and boiling points, solvent scales, and refractive
indexes.13 Recent examples include correlations for: (i)
binding energies for 1:1 complexation systems of organic
guests and b-cyclodextrin,14 (ii) the in vitro minimum
inhibitory concentration (MIC) of 3-aryloxazolidin-2-
one antibacterials15, and (iii) partition coefficients of
medicinal drugs between human breast milk and
plasma.16

We correlated the 31 protection times (PT) determined
by Suryanarayana et al.2 by testing the compounds at
a dose of 1 mg/cm2 onto the external surface of a human
hand followed by exposure to 200 female (5–7 days old)
Aedes aegypti mosquitoes. The PT is defined as the peri-
od of protection in minutes until two consecutive bites
are made within a 30 min interval. The reported protec-
tion times represent averages of multiple determina-
tions. The compound dataset represents 31 amide
analogues of N,N-diethyl-m-toluamide (DEET) and
N,N-diethylphenylacetamide (DEPA) (see Table 1).

Conformational searches were carried out over all 31
structures using the AMBER2 force field method in
molecular mechanics (MM) optimization encoded in
HyperChem software17 in our attempts to obtain the
lowest energy conformer within a reasonable computa-
tional time. Depending on the number of free torsion
angles in each molecule numerous conformers (between
100 and 200) were found by MM optimizations. These
optimizations were concluded when a gradient of
0.01 kcal/(Å mol) was reached for a certain conformer.
The lowest energy conformer for a given molecule was
then subjected to the quantum-mechanical semi-empiri-
cal AM1 calculations18 in order to calculate the molecu-
lar characteristics. These optimized structures were
loaded in Codessa Pro and more than 740 theoretical
descriptors were calculated. These descriptors can be
classified into several groups: (i) constitutional, (ii)
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Figure 1. Breaking point rule for determination of the number of the

descriptors.
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topological, (iii) geometrical, (iv) thermodynamic, (v)
quantum chemical, and (vi) charge-related. The stepwise
regression algorithm19 encoded in Codessa Pro software
was used to select significant descriptors for building
multilinear QSAR models. The treatment started with
the reduction in the number of molecular descriptors.
If two descriptors intercorrelated highly with each other,
then only one of them was selected; descriptors with
insignificant variance for the data set treated were also
rejected. This helps to speed up the descriptor selection
and reduce the probability of including unrelated
descriptors by chance. The ‘best multilinear regression’
(BMLR) approach encoded in Codessa Pro provides a
QSAR equation that best fits the experimental data in
terms of the Fisher criterion and the cross-validation
coefficient R2

cv.

A major decision in developing successive QSAR is
when to stop adding descriptors to the model during
the stepwise regression procedure. A simple technique
to control the model expansion is the so-called ‘breaking
point’ in the improvement of the statistical quality of the
model, by analyzing the plot of the number of descrip-
tors involved in the obtained models versus squared cor-
relation coefficient values corresponding to those
models. Frequently, the statistical improvement of the
regression model is less significant (DR2 < 0.02–0.04)
after a certain number of independent variables in the
model (‘breaking point’). Consequently, the model cor-
responding to the breaking point is considered the
best/optimum model.

Another important step in the QSAR modeling is to val-
idate the obtained model. Internal validation was car-
ried out for the best model obtained by Codessa Pro
as follows: (i) the parent data points (31) were divided
into three subsets (A–C): the first, fourth, seventh, etc.,
data points go into the first subset (A), the second, fifth,
eight, etc., into the second subset (B), and the third,
sixth, ninth, etc., into the third subset (C), (ii) the three
sets A–C were prepared as the combinations of two
training subsets (A and B), (A and C), and (B and C),
respectively. The remaining subsets (A, B, and C, respec-
tively) become the corresponding test sets then, and (iii)
a correlation equation was derived for each of the train-
ing sets with the same descriptors (but different regres-
sion coefficients). Next, the equation obtained was
used to predict the protection time values for the com-
pounds from the corresponding test set.

Another validation that was used in this study is leave-
one-out approach.20 This validation was performed for
Table 2. The best 4-descriptor QSAR model with R2 = 0.78, N = 31, F = 23

Descriptor no. X ±DX t test R2

0 21.1 2.09 10.1

1 �86.2 10.5 �8.19 0.16

2 �0.93 0.13 �6.89 0.54

3 �0.99 0.23 �4.28 0.71

4 �2.66 0.91 �2.91 0.79

a Descriptor definitions are given in Supplementary material.
the main models. Thus, the efficiency of the QSAR equa-
tions to predict protection time was estimated based on
the comparison of criterion such as the cross-validation
coefficient R2

cv. We also divided the parent data set to
provide an external test set consisting of every fifth com-
pound; we used the remaining 26 compounds as a train-
ing set to obtain a 4-descriptor model (R2 = 0.83), where
the external set was tested. It gave a satisfactory
R2

pred ¼ 0:76.

The best statistical model obtained by using Codessa
Pro descriptors for the PT data is shown in Table 2.
This model includes 4-descriptors that are ordered by
descending order according to their statistical signifi-
cance (t test). In Table 2, X and DX are the
regression coefficients and their standard errors. The
co-linearity of any pair of the descriptors is less than
r2

col ¼ 0:42.

Therefore, the model descriptors can be considered suf-
ficiently orthogonal. The number of parameters was
selected according to the breaking point rule for the
improvement of R2 as demonstrated in Figure 1.

There are several treatments of Vp in the literature sug-
gesting that the vapor pressure can be correlated well
with the protection time.3,6 Because of the importance
of the vapor pressure indicated by the previous workers,
we tested whether the use of Vp as a descriptor would
improve the correlation. It was clearly not appropriate
to use measured Vp since an equation including such a
descriptor could not be used conveniently for predictive
.9 and s2 = 0.51

R2
cv s2 Descriptora

Intercept

0.08 1.78 Principal moment of inertia A, D1

0.46 1.00 Structure information content (0), D2

0.63 0.65 Kier and Hall index (order 2), D3

0.70 0.51 Tot hybrid. comp. of molec. dipole, D4
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purposes. The dependence of Vp on structure depends
somewhat on the type of compound considered, there-
fore a new QSPR model for the vapor pressure was de-
rived specifically for the data set of 31 DEET analogues.

Experimental vapor pressures (Vp) of these compounds
were taken from the SciFinder catalog.21 Using Codessa
Pro in the normal manner gave the 3-descriptor model
for the vapor pressure shown in Table 3 with the follow-
ing statistical characteristics: R2 = 0.956, R2

cv = 0.940,
F = 198.82, and s2 = 0.041.

The most significant descriptor according to the t test in
Table 3 is D5, the gravitation index calculated over all
bonds of the molecule. As can be noted, with descriptor
D5 alone the model R2 is already 0.80. In addition, the
combination of the descriptors D5 and D6 shows that
the equation is similar to the more general model devel-
oped in work (22) which is based on 411 compounds. All
these suggests that the QSPR equation in Table 3 is reli-
able and can be used for adequate prediction of the va-
por pressure.
Table 3. Three-parameter model for the vapor pressure (Vp) based on 31 co

Descriptor no. X ±DX t test R2 R2
cv

0 10.49 1.01 10.41

1 0.01 3e-4 �23.19 0.80 0.77

2 �26.51 2.88 �9.21 0.88 0.85

3 0.43 0.06 7.01 0.96 0.94

b Descriptor definitions are given in Supplementary material.

Table 4. The best 4-parameter model with calculated descriptor (logVp)2: R

Descriptor no. X ±DX t test R2 R2
cv

0 41.10 11.74 3.49

1 �77.09 8.61 �8.95 0.165 0.08

2 �0.25 0.03 �8.86 0.70 0.64

3 0.41 0.10 3.95 0.77 0.67

4 �44.62 15.08 �2.95 0.80 0.72

c Descriptor definitions are given in Supplementary material.

Table 5. Predicted protection times (PT) in hours

ID Exp. PT Pred. PT-2 Pred. PT-4

1 5 4.49 4.24

2 3 2.13 2.98

3 3 3.37 2.80

4 2.83 3.61 3.50

5 1.67 2.69 2.16

6 1 0.92 1.32

7 5 3.66 3.71

8 4 3.84 3.32

9 4 3.45 3.81

10 3.5 2.84 3.24

11 2.83 2.93 3.16

12 1 1.65 2.24

13 3 2.65 2.93

14 2.67 1.71 2.15

15 2 2.35 2.52

16 1.17 0.59 0.57

Predicted PT-2 using the model in Table 2.

Predicted PT-4 using the model in Table 4.
Next, values of the vapor pressure predicted by Table 3
relationship (see Table 1) were used as an external
descriptor in the common descriptor pool to try to im-
prove the model of Table 2 for the protection times.
Two functional relations were constructed from the pre-
dicted Vp, that is, (i) logVp and (ii) (logVp)2. After load-
ing these descriptors in the whole Codessa Pro storage,
the BMLR algorithm was run again in order to build
the models. The best 4-descriptor model found among
744 descriptors is shown in Table 4. This equation
included the (log Vp)2 as an independent variable. More-
over, a model with two descriptors (including (log Vp)2)
already gave a significantly high correlation R2 = 0.70 as
can be seen from Table 4.

Tables 2 and 4 show that these two models are close
from a statistical point of view. However, the equation
in Table 4 is better than that of Table 2 in terms of
R2, s2, and F. Also, the values of the statistical parame-
ters show that the models are robust and describe well
the experimental data. The Table 5 values of the protec-
tion time collects predicted from each of the models
mpounds

s2 Descriptorb

Intercept

0.18 Gravitation index (all bonds), D5

0.11 H-donors FPSA (version 2), D6

0.04 Tot molecular 2-center resonance energy/no. of atoms, D7

2 = 0.80, F = 26, and s2 = 0.47

s2 Descriptorc

Intercept

1.77 Principal moment of inertia A, D1

0.65 (logVp)2, D8

0.51 HA-dependent HDSA-2(Zefirov), D9

0.47 Minimum atomic orbital electronic population, D10

ID Exp. PT Pred. PT-2 Pred. PT-4

17 1.08 0.71 1.00

18 1 1.88 1.21

19 0.5 1.73 1.47

20 0.67 0.95 1.68

21 0.58 0.74 0.71

22 0.5 0.84 0.97

23 0.08 0.12 0.31

24 0.08 0 �0.30

25 0.08 �0.59 �1.28

26 3 2.96 2.19

27 2 1.2 1.28

28 1.42 2.03 1.39

29 1 2.15 1.63

30 1 1.61 1.57

31 0.75 0.57 0.92
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given in Tables 2 and 4. Graphical presentations of these
predictions are provided in Figures 2 and 3.

It can be noted from both figures and Table 5 above that
the PT of the compounds with ID 24 and 25 was predict-
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Figure 2. Experimental versus predicted PT according to the model in

Table 2.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental PT, h

Pr
ed

ic
te

d 
PT

, h

Figure 3. Experimental versus predicted PT according to the model in

Table 4.

Table 6. Internal validation of the QSAR models

Training set N R2 (fit) R2
cv (fit) s2 (fit

Model in Ta

A + B 20 0.84 0.72 0.43

A + C 21 0.83 0.73 0.51

B + C 21 0.72 0.67 0.59

Average 0.80 0.71 0.51

Model in Ta

A + B 20 0.78 0.74 0.58

A + C 21 0.82 0.72 0.54

B + C 21 0.82 0.70 0.39

Average 0.81 0.72 0.51
ed as a negative value. However, these compounds are
not outliers according to the model errors (standard
deviation). Since the BMLR method is not a constrained
algorithm by the experimental values, this is possible.

In order to test the predictive power of the models an
internal threefold cross-validation was performed for
the current data set. The results of this testing are shown
in Table 6. The data sets A–C are divided as was ex-
plained previously. The superior robustness of the Table
4 model is also evident from Table 6.

The descriptors involved in the models could be possibly
explained as follows: (i) D1 and D2, that are molecular
shape related descriptors, represent the repellent fit into
a receptor active center, (ii) D5 describes the repellent
chemical reaction with a receptor active center. Basical-
ly, the repellent activity quantified by the protection
time can be assigned to the influence of three main
molecular interactions. First, vaporization is connected
with the duration of time when a mosquito can have
contact with the repellent. As shown above and in previ-
ous models of vapor pressure,22 the molecular size and
shape descriptors such as D1 and D2 play a determining
role for vapor pressure of compounds. The second
important characteristic is the structural fit on an un-
known active receptor center. The third kind of interac-
tion should relate to the chemical reaction with a
receptor, resulting in the act of repelling. Again, this
should be directly related to the shape and size descrip-
tors of this QSPR model (D1 and D2). The interaction
between the active compound and its biological counter-
part can be also reflected by D3, that is connected to the
shape and branching of the compound, and to descrip-
tor D4 that characterized the charge distribution in the
compound. The dipole moment indicates the intrinsic
polarity of the molecule. Its magnitude is also a good
indicator of lipophilicity and hydrophobicity; the larger
its magnitude, the higher is its hydrophilicity.4

Regarding functional groups and structural correlations,
all compounds in the data set include an O atom. The
descriptors D9 and D10 are connected to the hydrogen
donor capabilities of the molecule and the orbital elec-
tronic population. In turn, it could possibly influence
the protection time of the repellent.3 The most active
compounds seem to be compounds with the aromatic
ring bearing one substituent (CH3 or Cl). The examina-
) Test set N R2 (pred) s2 (pred)

ble 2

C 11 0.71 0.80

B 10 0.60 0.97

A 10 0.82 0.62

0.71 0.79

ble 4

C 11 0.91 0.51

B 10 0.87 0.72

A 10 0.83 1.02

0.87 0.75
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tion of the respective descriptor values for such com-
pounds showed a tendency for D8 and D1 values to be
low. Change of the aromatic via alicyclic was usually
slightly deleterious to PT. These structural criteria could
be used for guidance for the synthesis of active repellents.

The equations possess one common descriptor: Princi-
pal moment of inertia A. It is likely that this descriptor
related linearly to the experimental data and is impor-
tant for the mass distribution of the molecule (see Sup-
plementary material for the descriptor definition).
Finally, the Principal moment of inertia A possesses
the largest t values in both equations (t values define
the statistical significance of a descriptor).

The model in Table 4 (in contrast to the model in Table
2) R2 of 0.70 with just two descriptors. The addition of
the external descriptor (log Vp)2 drastically improves the
quality of the fit. We also tested as an additional exter-
nal descriptor the lipophilicity logP (octanol–water par-
tition coefficient), however, its inclusion did not lead to a
better QSAR model.

Two QSAR models were developed for the description
of mosquito repellent protection times PT with satisfac-
tory statistical characteristics. The models include 4-de-
scriptors revealing the linear relationship with the
protection times of 31 repellents. External descriptors
such as log Vp and its square function were added to
the descriptor pool since the vapor pressure is important
factor for the PT.

An additional QSPR model was developed for logVp

and thus no experimental data are needed for predic-
tions of the PT from this data set. The examination of
this descriptor space revealed that the descriptor
(log Vp)2 is statistically significant and improves the
model quality significantly. In addition, the descriptors
that appeared in the models and feature the shape and
volume as well as the charge distribution of compounds
are likely important for determining the activity of the
repellents. The PT predicted by both models (see Table
5) are slightly higher for compounds 8 and 9 that possess
experimental PT values lower than DEET (7). However,
the main prediction trend of these equations follows the
experimental data within the error limits.

The success of the present work suggests that a general
QSPR treatment of repellents could be of great benefit
in synthetic efforts in the effort to discover better com-
pounds for practical use.
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